A state–space mixture approach for estimating catastrophic events in time series data
نویسندگان
چکیده
Catastrophic events are considered a major contributor to extinction threats, yet are rarely explicitly estimated in population models. We extend the basic state–space population dynamics model to include a mixture distribution for the process error. The mixture distribution consists of a “normal” component, representing regular process error variability, and a “catastrophic” component, representing rare events that negatively affect the population. Direct estimation of parameters is rarely possible using a single time series; however, estimation is possible when time series are combined in hierarchical models. We apply the catastrophic state–space model to simulated time series of abundance from simple, nonlinear population dynamics models. Applications of the model to these simulated time series indicate that population parameters (such as the carrying capacity or growth rate) and observation and process errors are estimated robustly when appropriate time series are available. Our simulations indicate that the power to detect a catastrophe is also a function of the strength of catastrophes and the magnitude of observation and process errors. To illustrate one potential application of this model, we apply the state–space catastrophic model to four west coast populations of northern fur seals (Callorhinus ursinus). Résumé : Bien qu’on considère que les événements catastrophiques constituent des menaces d’extinction importantes, ceux-ci sont rarement estimés de façon explicite dans les modèles démographiques. Nous étendons un modèle démographique de base de type état–espace pour inclure une distribution de mélange de l’erreur de processus. La distribution de mélange comprend une composante « normale » qui représente la variabilité de l’erreur de processus ordinaire et une composante « catastrophique » qui représente les événements rares qui affectent la population de façon négative. Il est rarement possible d’estimer directement les variables à partir d’une seule série chronologique, mais cette estimation est possible lorsque plusieurs séries chronologiques sont combinées dans des modèles hiérarchiques. Nous utilisons le modèle état–espace catastrophique avec des séries chronologiques simulées d’abondance provenant de modèles de dynamique de population simples et non linéaires. L’application de ces modèles aux séries chronologiques simulées indique que les variables de la population (telles que le stock limite et le taux de croissance), ainsi que les erreurs d’observation et de processus, sont estimées avec robustesse lorsque des séries chronologiques appropriées sont disponibles. Nos simulations indiquent que la capacité de prédire une catastrophe est aussi fonction de la force des catastrophes et de l’importance des erreurs d’observation et de processus. Afin d’illustrer une application possible du modèle, nous utilisons le modèle état-espace catastrophique avec quatre populations d’otaries à fourrure du Nord (Callorhinus ursinus) de la Côte ouest. [Traduit par la Rédaction] Ward et al. 910
منابع مشابه
A time series of infectious-like events in Australia between 2000 and 2013 leading to extended periods of increased deaths (all-cause mortality) with possible links to increased hospital medical admissions
Background and aims: Trends in deaths and medical admissions in the UK and Europe show evidence for a series of infectious-like events. These events have been overlooked by traditional surveillance methodologies. Preliminary evidence points to a rise in medical admissions in Australia around the same time as those observed in Europe, and this study was aimed to evaluate whether the deaths are o...
متن کاملNew Statistical Methods for Analysis of Historical Data from Wildlife Populations
Population time series data from field studies are complex and statistical analysis requires models that describe nonlinear population dynamics and observational errors. State-space formulations of stochastic population growth models have been used to account for measurement error caused by the data collection process. Parameter estimation, inference, and prediction are all sensitive to measure...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملFundamental Steady state Solution for the Transversely Isotropic Half Space
Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...
متن کاملFuzzy clustering of time series data: A particle swarm optimization approach
With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007